þÿ<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns="http://www.w3.org/TR/REC-html40"> <head> <meta http-equiv=Content-Type content="text/html; charset=windows-1252"> <meta name=ProgId content=Word.Document> <meta name=Generator content="Microsoft Word 9"> <meta name=Originator content="Microsoft Word 9"> <title>Pascal-Programme für Pi </title> <!--[if gte mso 9]><xml> <o:DocumentProperties> <o:Author>Hans-Jürgen Caspar</o:Author> <o:LastAuthor>h</o:LastAuthor> <o:Revision>2</o:Revision> <o:Created>2003-03-17T19:29:00Z</o:Created> <o:LastSaved>2003-03-17T19:29:00Z</o:LastSaved> <o:Pages>8</o:Pages> <o:Words>3263</o:Words> <o:Characters>18601</o:Characters> <o:Lines>155</o:Lines> <o:Paragraphs>37</o:Paragraphs> <o:CharactersWithSpaces>22843</o:CharactersWithSpaces> <o:Version>9.2812</o:Version> </o:DocumentProperties> </xml><![endif]--><!--[if gte mso 9]><xml> <w:WordDocument> <w:HyphenationZone>21</w:HyphenationZone> </w:WordDocument> </xml><![endif]--> <style> <!-- /* Font Definitions */ @font-face {font-family:"MS Mincho"; panose-1:2 2 6 9 4 2 5 8 3 4; mso-font-alt:"\FF2D\FF33 \660E\671D"; mso-font-charset:128; mso-generic-font-family:modern; mso-font-pitch:fixed; mso-font-signature:-1610612033 1757936891 16 0 131231 0;} @font-face {font-family:"\@MS Mincho"; panose-1:2 2 6 9 4 2 5 8 3 4; mso-font-charset:128; mso-generic-font-family:modern; mso-font-pitch:fixed; mso-font-signature:-1610612033 1757936891 16 0 131231 0;} /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-parent:""; margin:0cm; margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:16px; mso-bidi-font-size:16px; font-family:Arial; mso-fareast-font-family:"Calibri";} a:link, span.MsoHyperlink {color:darkblue; text-decoration:underline; text-underline:single;} a:visited, span.MsoHyperlinkFollowed {color:purple; text-decoration:underline; text-underline:single;} p.MsoPlainText, li.MsoPlainText, div.MsoPlainText {margin:0cm; margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:18px; font-family:"Courier New"; mso-fareast-font-family:"Calibri";} span.EmailFormatvorlage15 {mso-style-type:personal; mso-ansi-font-size:11.0pt; mso-ascii-font-family:Arial; mso-hansi-font-family:Arial; mso-bidi-font-family:Arial; color:windowtext;} span.EmailFormatvorlage16 {mso-style-type:personal; mso-ansi-font-size:11.0pt; mso-ascii-font-family:Arial; mso-hansi-font-family:Arial; mso-bidi-font-family:Arial; color:windowtext;} @page Section1 {size:595.3pt 841.9pt; margin:70.85pt 57.6pt 2.0cm 57.6pt; mso-header-margin:35.4pt; mso-footer-margin:35.4pt; mso-paper-source:0;} div.Section1 {page:Section1;} --> </style> <!--[if gte mso 9]><xml> <o:shapedefaults v:ext="edit" spidmax="1026"/> </xml><![endif]--><!--[if gte mso 9]><xml> <o:shapelayout v:ext="edit"> <o:idmap v:ext="edit" data="1"/> </o:shapelayout></xml><![endif]--> </head> <body lang=DE link=darkblue vlink=purple style='tab-interval:35.4pt'> <div class=Section1> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:17.0px;mso-bidi-font-size:17.0px;font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'><b>Pascal-Programme für Pi</b> von Hans-Jürgen Caspar <span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:11.0pt;mso-bidi-font-size:11.0pt;font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'><font color="maroon">(Seite erstellt unter Windows und mit dem Internet Explorer. Mit anderen Systemen und Browsern<br> sind ein Schreibfehler - lat. p statt griech. pi - und falsche Einrückungen bei den Formeln möglich.)<font color="black"><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Mit Pi oder </span><span style='font-family:Symbol;mso-fareast-font-family:"MS Mincho"; mso-bidi-font-family:"Calibri"'>&#960;</span><span style='font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'> bezeichnet man das Verhältnis Kreisumfang zu Kreisdurchmesser: </span><span style='font-family:Symbol;mso-fareast-font-family: "MS Mincho";mso-bidi-font-family:"Calibri"'>&#960;</span><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'> = U/d, gleichbedeutend mit U = </span><span style='font-family:Symbol;mso-fareast-font-family: "MS Mincho";mso-bidi-font-family:"Calibri"'>&#960;</span><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>d = 2</span><span style='font-family:Symbol;mso-fareast-font-family:"MS Mincho";mso-bidi-font-family: "Calibri"'>&#960;</span><span style='font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'>r, r = Kreisradius. Der genaue Wert von </span><span style='font-family:Symbol;mso-fareast-font-family:"MS Mincho";mso-bidi-font-family: "Calibri"'>&#960;</span><span style='font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'> ist nicht bekannt, doch bewies bereits vor über 2000 Jahren der griechische Mathematiker und Physiker ARCHIMEDES (287-212 v. Chr.), daß </span><span style='font-family:Symbol;mso-fareast-font-family: "MS Mincho";mso-bidi-font-family:"Calibri"'>&#960;</span><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'> zwischen 3<sup>10</sup>/<sub>71</sub> und 3<sup>10</sup>/<sub>70</sub> liegt. Für die obere dieser beiden Grenzen, 3<sup>1</sup>/<sub>7</sub>, schreibt man oft auch <sup>22</sup>/<sub>7</sub>&nbsp;; ein guter, für viele Anwendungsszwecke ausreichender, dezimal geschriebener Näherungswert ist 3,14. Wie die folgenden Programme zeigen, beginnt </span><span style='font-family:Symbol;mso-fareast-font-family: "MS Mincho";mso-bidi-font-family:"Calibri"'>&#960;</span><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'> mit 3,141592...; mit diesen sechs Nachkommastellen läßt sich der Umfang eines Kreises von 1 km Durchmesser auf einen Millimeter genau berechnen. <o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:Symbol;mso-fareast-font-family:"MS Mincho";mso-bidi-font-family: "Calibri"'>&#960;</span><span style='font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'> kommt nicht nur bei der Kreisberechnung (sowohl Umfang wie Flächeninhalt) vor, sondern auch bei zylindrischen und kegelförmigen Gefäßen, deren Volumen man wissen möchte, sowie bei der Kugel. Auch auf vielen anderen mathematischen Gebieten, in der Physik und Technik spielt </span><span style='font-family:Symbol;mso-fareast-font-family:"MS Mincho"; mso-bidi-font-family:"Calibri"'>&#960;</span><span style='font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'> eine große Rolle. Sogar in den Abmessungen der ägyptischen Pyramiden soll es nach gewissen Theorien enthalten sein, und selbst die Poeten haben sich der <i>Kreiszahl</i>, wie </span><span style='font-family:Symbol;mso-fareast-font-family:"MS Mincho";mso-bidi-font-family: "Calibri"'>&#960;</span><span style='font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'> auch genannt wird, angenommen. Sie schrieben in verschiedenen Sprachen eine große Anzahl von Versen, zum Teil langen Gedichten, die das Auswendiglernen von </span><span style='font-family: Symbol;mso-fareast-font-family:"MS Mincho";mso-bidi-font-family:"Calibri"'>&#960;</span><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>-Dezimalen erleichtern sollten; einige werden in [1] wiedergegeben. Eine weitere, vermutlich unbekannte, vom Verfasser dieser Zeilen durch Zufall entdeckte Kuriosität sei noch erwähnt: <span style="font-size:12pt; font-family:Calibri"> Schreibt man für eine einfache Verschlüsselung unter die Buchstaben des Alphabets die Zahlen 1 bis 26 um vier Stellen versetzt:<br><span style="font-size:10pt; font-family:Courier New"> &nbsp;a&nbsp; b&nbsp; c&nbsp; d&nbsp; e&nbsp; f&nbsp; g&nbsp; h&nbsp; i&nbsp; j&nbsp; k&nbsp; l&nbsp; m&nbsp;&nbsp;n&nbsp; o&nbsp; p&nbsp; q&nbsp; r&nbsp; s&nbsp; t&nbsp; u&nbsp; v&nbsp; w&nbsp; x&nbsp; y&nbsp; z&nbsp;<br> 23 24 25 26&nbsp; 1&nbsp; 2&nbsp; 3&nbsp; 4&nbsp; 5&nbsp; 6&nbsp; 7&nbsp; 8&nbsp; 9&nbsp;10 11 12 13 14 15 16 17 18 19 20 21 22,<br> <span style="font-size:12pt; font-family:Calibri"> dann ergibt sich für das verschlüsselte Wort "geheim" 314159 &#8211; der Anfang von <span style='font-family:Symbol;mso-fareast-font-family:"MS Mincho"; mso-bidi-font-family:"Calibri"'>&#960;</span><span style="font-size:12pt; font-family:Calibri">. <br> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>ARCHIMEDES ging bei seinen Forschungen zur Kreiszahl von regelmäßigen Vielecken aus, die einem Kreis einbeschrieben bzw. umschrieben sind. Je höher die Eckenzahl dieser Vielecke ist, umso mehr nähern sie sich von innen und außen dem Kreis an. Archimedes begann beim regelmäßigen Sechseck, verdoppelte es anschließend zum Zwölfeck, dann zum 24-, 48-, 96-Eck usw. Jedesmal ist hierbei die Vieleckseite neu zu berechnen, und wenn der bei n Ecken erhaltene Wert s<sub>n</sub> mit n multipliziert wird, entsteht der zugehörige Vielecks<i>umfang</i> U<sub>n</sub>, der sich vom Kreisumfang U = 2</span><span style='font-family:Symbol;mso-fareast-font-family: "MS Mincho";mso-bidi-font-family:"Calibri"'>&#960;</span><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>r immer weniger unterscheidet. Hört man schließlich bei einer bestimmten Eckenzahl k auf und dividiert U<sub>k</sub> durch 2r, hat man einen Näherungswert </span><span style='font-family:Symbol;mso-fareast-font-family: "MS Mincho";mso-bidi-font-family:"Calibri"'>&#960;</span><sub><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>k</span></sub><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'> für </span><span style='font-family:Symbol;mso-fareast-font-family:"MS Mincho";mso-bidi-font-family: "Calibri"'>&#960;</span><span style='font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'>. Aus geometrischen Überlegungen folgt dabei noch, daß sich die Seitenlänge s<sub>2n</sub> des Vielecks mit der Eckenzahl 2n aus derjenigen mit der Eckenzahl n nach der Formel</span><span style='mso-fareast-font-family:"MS Mincho"'><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='mso-fareast-font-family: "MS Mincho"'><span style="mso-spacerun: yes">                            </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"; mso-ansi-language:EN-GB'>s<sub>2n</sub> = sqrt[(2r-sqrt(4r²- s<sub>n</sub>²))r]<span style="mso-spacerun: yes">                                  </span>(1)<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='mso-fareast-font-family:"MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>berechnen läßt. Dies wird in mehreren Schulbüchern, z.B. [2], die sich mit der näherungsweisen Berechnung von </span><span style='font-family:Symbol; mso-fareast-font-family:"MS Mincho";mso-bidi-font-family:"Calibri"'>&#960;</span><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'> beschäftigen, begründet und beim Programmieren angewendet. <o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Bei dem folgenden TurboPascal-Programm, welches der Einfachheit halber nur die einbeschriebenen Vielecke berücksichtigt (und die umschriebenen außeracht läßt) wird r=1 vorausgesetzt. Da wir vom Sechseck ausgehen, ist zu Anfang s=r=1. m zählt die einzelnen Näherungsschritte, n ist die Eckenzahl und p=3 der Anfangs-Näherungswert für </span><span style='font-family:Symbol;mso-fareast-font-family: "MS Mincho";mso-bidi-font-family:"Calibri"'>&#960;</span><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>, der sich beim Sechseck ergibt.</span><span style='font-size:9.0pt;mso-bidi-font-size: 11.0pt;font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">  </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'>Program piarchim; {Vieleckmethode nach Archimedes}<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'>uses dos,crt;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'>var m,n,s,u,p:real;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">    </span>ch:char;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'>Begin<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span></span><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'>clrscr;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span>writeln('Drücke fortlaufend die Leertaste!');writeln;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span></span><span lang=EN-GB style='font-size: 9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho";mso-ansi-language: EN-GB'>s:=1;m:=1;n:=6;p:=3;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>repeat<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>writeln(m:3:0,' ',n:8:0,'<span style="mso-spacerun: yes">   </span>',p:3:10);<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span></span><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'>m:=m+1;n:=2*n;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">  </span></span><span lang=EN-GB style='font-size: 9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho";mso-ansi-language: EN-GB'>s:=sqrt(2-sqrt(4-s*s));<span style="mso-spacerun: yes">  </span>{*}<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>u:=n*s;p:=u/2;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>repeat ch:=readkey until ch=' ';<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>until m=21;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'>End.<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='mso-fareast-font-family:"MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:39.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Läßt man das Programm ablaufen, ist das Ergebnis enttäuschend: die Näherungswerte werden erst besser und dann wieder schlechter. Dies liegt an der begrenzten Rechnergenauigkeit und an dem verwendeten Ausdruck (1), der für diesen Zweck ungünstig ist. Erweitert man ihn mit sqrt[(2r+sqrt(4r²-s<sub>n</sub>²))r], ergibt sich eine andere Form, die diesen Nachteil nicht hat. Wird demgemäß die mit {*} gekennzeichnete Programmzeile durch die Zeile s:=s/sqrt(2+sqrt(4-s*s)); ersetzt, funktioniert das Programm einwandfrei und liefert zwanzig immer besser werdende Näherungswerte für </span><span style='font-family:Symbol;mso-fareast-font-family: "MS Mincho";mso-bidi-font-family:"Calibri"'>&#960;</span><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>. </span><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">     </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>ARCHIMEDES lebte in Syrakus (Sizilien), und es dauerte über anderthalb Jahrtausende, bis seine Methode nach Mitteleuropa gelangte. Dies geschah zum Teil mit Hilfe der Araber, die damals in vielen Bereichen von Kultur und Wissenschaft führend waren. Der holländische Mathematiker LUDOLF VAN CEULEN (1540-1610) rechnete nach ARCHIMEDES bis zum einbeschriebenen 2<sup>62</sup>-Eck(!) und gewann damit im Laufe mehrerer Monate 32 Nachkommastellen von </span><span style='font-family:Symbol; mso-fareast-font-family:"MS Mincho";mso-bidi-font-family:"Calibri"'>&#960;</span><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>, die ihn berühmt machten. Bis ins 19. Jahrhundert bezeichnete man </span><span style='font-family:Symbol;mso-fareast-font-family:"MS Mincho";mso-bidi-font-family: "Calibri"'>&#960;</span><span style='font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'> auch als <i>Ludolphsche Zahl</i>. Anzumerken ist hierbei, daß es für praktische Zwecke völlig unsinnig ist, </span><span style='font-family:Symbol;mso-fareast-font-family:"MS Mincho";mso-bidi-font-family: "Calibri"'>p </span><span style='font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'>auf 32 Stellen zu kennen, siehe das obige Beispiel mit nur sechs Dezimalen. Die Kreiszahl wurde mit LUDOLF VAN CEULEN zu einem <i>eigenständigen, mathematischen Untersuchungsobjekt</i>, und die Jagd nach immer mehr Stellen, die bis heute nicht aufgehört hat, begann mit ihm.</span><span style='mso-fareast-font-family:"MS Mincho"'><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">                                   </span><font color="white">xxxxxxx<font color="black">*<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span></span><span style='font-family:"Calibri";mso-fareast-font-family: "MS Mincho"'><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'> Ab dem 16. Jahrundert löste man sich von den ursprünglichen geometrischen Vorstellungen. Dabei stand den Mathematikern eine große Palette von Möglichkeiten zur angenäherten Berechnung von </span><span style='font-family: Symbol;mso-fareast-font-family:"MS Mincho";mso-bidi-font-family:"Calibri"'>p </span><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>zur Verfügung, die im Laufe der Zeit immer mehr erweitert wurde: unendliche Reihen, Kettenbrüche, Kettenwurzeln und Produkte. Manches wurde auch fern von Europa, vor allem in China und Indien, erdacht. Vieles davon wird in dem Buch [3] ausführlich beschrieben bzw. zitiert; es gibt die Entwicklung der </span><span style='font-family:Symbol;mso-fareast-font-family:"MS Mincho";mso-bidi-font-family: "Calibri"'>&#960;</span><span style='font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'>-Forschung bis zum Ende des 20. Jahrhunderts wieder. Zahlreiche Formeln für </span><span style='font-family: Symbol;mso-fareast-font-family:"MS Mincho";mso-bidi-font-family:"Calibri"'>&#960;</span><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'> enthält auch das Internet-Dokument [4] (PDF-Datei, 60 Seiten in französischer Sprache).<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Hier möchte ich mich nur der erstgenannten Möglichkeit zuwenden: bestimmten unendlichen Reihen. Schon den damaligen Forschern war aufgefallen, daß die Nachkommastellen von </span><span style='font-family:Symbol;mso-fareast-font-family:"MS Mincho"; mso-bidi-font-family:"Calibri"'>&#960;</span><span style='font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'> keinerlei Regelmäßigkeit aufweisen und sich insbesondere nicht periodisch wiederholen, wie dies bei Brüchen der Fall ist. Der Verdacht lag nahe, daß es sich bei </span><span style='font-family: Symbol;mso-fareast-font-family:"MS Mincho";mso-bidi-font-family:"Calibri"'>&#960;</span><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'> um eine <i>irrationale</i> Zahl handelt wie Wurzel aus 2 oder lg 5. (Dies wurde von J. H. LAMBERT 1761 bewiesen.) So erregte es großes Aufsehen, als sich herausstellte, daß es <i>doch</i> eine einfache, leicht zu beschreibende Gesetzmäßigkeit für </span><span style='font-family:Symbol;mso-fareast-font-family:"MS Mincho";mso-bidi-font-family: "Calibri"'>&#960;</span><span style='font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'> gibt, wenn auch nicht bei der Darstellung im Dezimalsystem. Sie kommt in der LEIBNIZschen Reihe zum Ausdruck:<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;font-family:Symbol;mso-fareast-font-family: "MS Mincho"'>&#960;</span><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt; mso-fareast-font-family:"MS Mincho"'>/4 = 1  1/3 + 1/5  1/7 + 1/9 - + ... ,<span style="mso-spacerun: yes">                         </span>(2)<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>die im englischen Sprachraum oft auch als GREGORY-Reihe bezeichnet wird.<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span></span><span style='font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Die Leibnizreihe ist der Sonderfall x=1 der Reihe für die Arkustangensfunktion:<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'>arctan x = x  x^3/3 + x^5/5  x^7/7 + - ...<span style="mso-spacerun: yes">                      </span>(3) <o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>(Zur Erinnerung: arctan x = y ist gleichbedeutend mit tan y = x. Weil tan </span><span style='font-family:Symbol;mso-fareast-font-family:"MS Mincho";mso-bidi-font-family: "Calibri"'>&#960;</span><span style='font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'>/4 = 1 ist, ist arctan 1 = </span><span style='font-family:Symbol;mso-fareast-font-family:"MS Mincho";mso-bidi-font-family: "Calibri"'>&#960;</span><span style='font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'>/4. <a href="ohnew.htm"><font color="darkblue"><u>Mehr dazu</u></a><font color="black">)<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Faßt man je zwei aufeinanderfolgende Glieder der Leibnizreihe zu einem zusammen, entsteht aus (2) die Reihe<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;font-family:Symbol;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span>&#960;</span><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'>/8 = 1/(1·3) + 1/(5·7) + 1/(9·11) + .... ;<span style="mso-spacerun: yes">                     </span>&nbsp;&nbsp;(4)<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>sie entspricht der Reihe des Inders NILAKANTHA SOMAYAJI (geb. 1444):<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'><![if !supportEmptyParas]>&nbsp;<![endif]><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><span style="mso-spacerun: yes">       </span>1<span style="mso-spacerun: yes">        </span>1<span style="mso-spacerun: yes">         </span>1<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;font-family:Symbol;mso-fareast-font-family:"MS Mincho"'>&#960;</span><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'>/8 = ------ + ------ + ------- + ... ,<span style="mso-spacerun: yes">                         </span>&nbsp;&nbsp;&nbsp;(4a)<span style="mso-spacerun: yes">  </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">      </span>2² - 1<span style="mso-spacerun: yes">   </span>6² - 1<span style="mso-spacerun: yes">   </span>10² - 1<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>der lange vor Leibniz (1646-1716) und Gregory (1638-1675) lebte und hundert Jahre alt wurde. (Die Reihe (4a) wird übrigens in der Formelsammlung von [3] falsch zitiert: dort steht sie mit alternierenden Vorzeichen.)</span><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'> <o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Sowohl die Leibnizreihe (2) wie die aus ihr durch Umformung gewonnenen Reihen (4) bzw. (4a) sind, so schön sie aussehen, für die praktische Berechnung von </span><span style='font-family:Symbol;mso-fareast-font-family:"MS Mincho";mso-bidi-font-family: "Calibri"'>&#960;</span><span style='font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'> leider gänzlich ungeeignet. Dies erkennt man z. B. an (2): Das 1000. Glied dieser Reihe ist ungefähr gleich 0,0005; d. h., um nur vier sichere Nachkommastellen von </span><span style='font-family: Symbol;mso-fareast-font-family:"MS Mincho";mso-bidi-font-family:"Calibri"'>&#960;</span><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'> zu erhalten, muß man mindestens 10000 Glieder der Leibnizreihe berücksichtigen!<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Die Leibnizreihe liefert deshalb so schlechte Ergebnisse, weil die Arkustangensreihe (3) für x=1 nur noch äußerst langsam konvergiert. (Daß sie es überhaupt tut und nicht divergiert, ist nicht selbstverständlich und in der Hochschulmathematik Gegenstand eines eigenen Beweises.)<span style="mso-spacerun: yes">  </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Wählt man das Argument x in (3), absolut gesehen, kleiner als 1, konvergiert die Reihe schneller, und dies kann man auf andere Weise für die angenäherte Berechnung von </span><span style='font-family:Symbol;mso-fareast-font-family: "MS Mincho";mso-bidi-font-family:"Calibri"'>&#960;</span><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'> ausnutzen. Es gilt nämlich nicht nur </span><span style='font-family:Symbol; mso-fareast-font-family:"MS Mincho";mso-bidi-font-family:"Calibri"'>&#960;</span><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>/4 = arctan 1, sondern nach dem Schweizer Mathematiker EULER (1707-1783) auch:</span><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">  </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-right:48.1pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">     </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;font-family:Symbol;mso-fareast-font-family: "MS Mincho"'>&#960;</span><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt; mso-fareast-font-family:"MS Mincho"'>/4 = arctan1/2 + arctan1/3. <o:p></o:p></span></p> <p class=MsoPlainText style='margin-right:48.1pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><![if !supportEmptyParas]>&nbsp;<![endif]><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Hiermit läßt sich die Kreiszahl auf eine vorgegebene Anzahl von Stellen sehr viel leichter berechnen als mit der Leibnizreihe. Mit der von EULER ebenfalls gefundenen Formel</span><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt; mso-fareast-font-family:"MS Mincho"'> <o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><![if !supportEmptyParas]>&nbsp;<![endif]><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;font-family:Symbol;mso-fareast-font-family: "MS Mincho"'>&#960;</span><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt; mso-fareast-font-family:"MS Mincho"'>/4 = 5·arctan1/7 + 2·arctan3/79 , <o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><![if !supportEmptyParas]>&nbsp;<![endif]><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>in der die Argumente der Arkustangensterme noch kleiner sind als in der vorhergehenden, erhielt er nach [3] zwanzig Stellen von </span><span style='font-family:Symbol;mso-fareast-font-family:"MS Mincho";mso-bidi-font-family: "Calibri"'>&#960;</span><span style='font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'> in weniger als einer Stunde  ein gewaltiger Fortschritt gegenüber dem, was oben über Ludolf van Ceulen berichtet wurde!<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Bei den </span><span style='font-family:Symbol;mso-fareast-font-family:"MS Mincho"; mso-bidi-font-family:"Calibri"'>&#960;</span><span style='font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'>-Berechnern war bis zur Erfindung des Computers und noch eine Weile danach die Formel von MACHIN (1680-1751): <o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">           </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;font-family:Symbol;mso-fareast-font-family:"MS Mincho"'>&#960;</span><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'>/4 = 4·arctan1/5  arctan1/239<span style="mso-spacerun: yes">                               </span>(5) <o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>eine der beliebtesten. Bei ihr ist das Argument des zweiten Arkustangensterms besonders klein. Sie spielt auch bei einem der folgenden Programme eine Rolle. Im übrigen bestehen die meisten anderen, auf Arkustangensbasis zur angenäherten Berechnung von </span><span style='font-family:Symbol;mso-fareast-font-family: "MS Mincho";mso-bidi-font-family:"Calibri"'>&#960;</span><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'> geeigneten Formeln aus drei oder mehr Termen.<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Im Jahre 1995 wandten sich die beiden Amerikaner STANLEY RABINOWITZ und STANLEY WAGON wieder der ursprünglichen Leibnizreihe zu, die sie mit Hilfe der sog. Euler-Transformation wie folgt umformten [3a],[5],[6]:<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">        </span>1<span style="mso-spacerun: yes">     </span>2<span style="mso-spacerun: yes">     </span>3<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;font-family:Symbol;mso-fareast-font-family:"MS Mincho"'>&#960;</span><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'> = 2 + -(2 + -(2 + -(2 + ...))) .<span style="mso-spacerun: yes">                            </span>(6)<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">        </span>3<span style="mso-spacerun: yes">     </span>5<span style="mso-spacerun: yes">     </span>7<span style="mso-spacerun: yes">          </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Wie diese Umformung im einzelnen vor sich ging, soll hier nicht erklärt werden und ist für das Weitere auch nicht erforderlich. Die geschachtelte Klammerschreibweise in (6) bewirkt, daß nicht mehr nur addiert, sondern auch multipliziert wird. Dadurch erhöht sich die Konvergenzgeschwindigkeit beträchtlich, so daß es bei geeigneter Programmierung nicht schwerfällt, 1000 Stellen von </span><span style='font-family:Symbol;mso-fareast-font-family: "MS Mincho";mso-bidi-font-family:"Calibri"'>&#960;</span><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'> und mehr in kurzer Zeit zu berechnen.<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">                                                                              </span><center>*</center><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Nun aber gibt es außer der Arkustangensreihe noch eine andere Reihe, die ebenfalls zur </span><span style='font-family:Symbol;mso-fareast-font-family:"MS Mincho"; mso-bidi-font-family:"Calibri"'>&#960;</span><span style='font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'>-Berechnung herangezogen werden kann: die <i>Arkussinus</i>reihe:<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">                </span>1<span style="mso-spacerun: yes">  </span>x^3<span style="mso-spacerun: yes">    </span>1·3 x^5<span style="mso-spacerun: yes">   </span>1·3·5 x^7<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'>arcsin x = x + ---·--- + ---·--- + -----·--- + ....<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">                </span>2<span style="mso-spacerun: yes">   </span>3<span style="mso-spacerun: yes">     </span>2·4<span style="mso-spacerun: yes">  </span>5<span style="mso-spacerun: yes">    </span>2·4·6<span style="mso-spacerun: yes">  </span>7<span style="mso-spacerun: yes">  </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Setzt man in ihr x=1/2, so ergibt sich wegen sin </span><span style='font-family:Symbol;mso-fareast-font-family: "MS Mincho";mso-bidi-font-family:"Calibri"'>&#960;</span><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>/6=1/2 nach leichter Umformung:<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">      </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">   </span><span style="mso-spacerun: yes">     </span>1<span style="mso-spacerun: yes">    </span>3·3<span style="mso-spacerun: yes">       </span>3·3·5<span style="mso-spacerun: yes">       </span>3·3·5·7<span style="mso-spacerun: yes">  </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;font-family:Symbol;mso-fareast-font-family:"MS Mincho"'>&#960;</span><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'> = 3 + - + ------ + --------- + ----------- + ...<span style="mso-spacerun: yes">  </span>.<span style="mso-spacerun: yes">          </span>(7) <o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">        </span>8<span style="mso-spacerun: yes">   </span>4·32·5<span style="mso-spacerun: yes">   </span>4·6·128·7<span style="mso-spacerun: yes">   </span>4·6·8·512·9<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Dies läßt sich, ohne Benutzung der Euler-Transformation, durch fortgesetztes, einfaches Ausklammern, auf die Form <o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'><![if !supportEmptyParas]>&nbsp;<![endif]><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">           </span>1·1<span style="mso-spacerun: yes">       </span>3·3 <span style="mso-spacerun: yes">      </span>5·5<span style="mso-spacerun: yes">            </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;font-family:Symbol;mso-fareast-font-family:"MS Mincho"'>&#960;</span><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">  </span>=<span style="mso-spacerun: yes">  </span>3 + -----(3 + -----(3 + -----(3 + ...)))<span style="mso-spacerun: yes">                 </span>(8)<o:p></o:p></span></p> <!-- <div style="position:absolute;left:45%; top:2155"> <img src="mitdem.PNG" name="wechsel" onmouseover="document.images.wechsel.src='ansicht.PNG'" onmouseout="document.images.wechsel.src='mitdem.PNG'"> </div> //--> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">          </span>8·1·3<span style="mso-spacerun: yes">     </span>8·2·5<span style="mso-spacerun: yes">     </span>8·3·7<span style="mso-spacerun: yes">  </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>bringen. Sie ähnelt der Darstellung (6) von RABINOWITZ und WAGON, weist aber zwei Besonderheiten auf: Zum einen ist Gl.(8) allem Anschein nach <i>neu</i>; in den ausgedehnten Formelsammlungen von [3] und [4] wird sie nicht erwähnt. Zum andern  und das ist für das weitere Vorgehen von größerer Bedeutung  konvergiert (8) <i>doppelt so schnell</i> wie (6) <sup>1)</sup>.<span style="mso-spacerun: yes">  </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><![if !supportEmptyParas]>&nbsp;<![endif]><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'>Auf (8) beruht das nächste Programm:<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'>Program pitau; {1000 Stellen von Pi}<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span></span><span lang=FR style='font-size:9.0pt; mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho";mso-ansi-language: FR'>uses crt,dos;const n=1000;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=FR style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"; mso-ansi-language:FR'><span style="mso-spacerun: yes"> </span></span><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'>Var<span style="mso-spacerun: yes">  </span>i,j,k:integer;c,d,q,u,x:word;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">      </span>a<span style="mso-spacerun: yes">    </span>:array[1..n+1] of word;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'>procedure divi(y:word);<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'>begin<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>c:=0;for j:=1 to n+1 do<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>begin x:=a[j]+c;q:=x div y;a[j]:=q;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span></span><span lang=FR style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:FR'>d:=x-y*q;c:=10*d;end;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'>end;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'>procedure mult(y:word);<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'>begin<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>for j:=1 to n+1 do a[j]:=y*a[j];<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>for j:=n+1 downto 2 do<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>begin u:=a[j] div 10;a[j-1]:=a[j-1]+u;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>a[j]:=a[j] mod 10;end;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'>end;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'>Begin<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>clrscr;k:=trunc(n*ln(10)/ln(4));<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>for i:=k downto 1 do begin divi(8);<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span></span><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:IT'>divi(i);mult(2*i-1);divi(2*i+1);<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"; mso-ansi-language:IT'><span style="mso-spacerun: yes"> </span></span><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'>mult(2*i-1);a[1]:=a[1]+3;end;write(' ');<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>for i:=1 to n+1 do begin write(a[i]);<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>if i=1 then write('.');if (i mod 6=0) then<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>write(' ');if wherex=80 then write('<span style="mso-spacerun: yes">   </span>');<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>end;write('... </span><span style='font-size:9.0pt;mso-bidi-font-size: 11.0pt;mso-fareast-font-family:"MS Mincho"'>(1000 Stellen)');repeat<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span></span><span lang=EN-GB style='font-size: 9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho";mso-ansi-language: EN-GB'>until keypressed;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'>End.<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Es liefert bei 500 MHz Taktfrequenz 1000 Stellen von </span><span style='font-family:Symbol;mso-fareast-font-family:"MS Mincho";mso-bidi-font-family: "Calibri"'>&#960;</span><span style='font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'> in einer Sekunde. Das Programm ist insofern besonders einfach, als es nur zwei Prozeduren enthält, in denen das schriftliche Dividieren und Multiplizieren nachgeahmt wird. Eine besondere Additionsprozedur ist nicht erforderlich: es genügt, bei jedem Schritt den Inhalt der ersten Speicherplatz-Zelle des verwendeten Arrays um 3 zu erhöhen. <o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Für einen möglichst schnellen Ablauf wurden hauptsächlich Word-Variable verwendet. Dies hat zur Folge, daß sich das Programm nur auf knapp 2000 Stellen erweitern läßt.<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">                                                                                </span><center>*</center> <o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Die verschachtelte Klammerschreibweise wie in (6) und (8) wirkt sich auch günstig bei der Arkustangensreihe aus, wenn </span><span style='font-family:Symbol;mso-fareast-font-family: "MS Mincho";mso-bidi-font-family:"Calibri"'>&#960;</span><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'> mit deren Hilfe berechnet werden soll. Hier gilt, was anscheinend auch nirgends erwähnt wird:<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'><![if !supportEmptyParas]>&nbsp;<![endif]><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">                       </span></span><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'>&nbsp;&nbsp;1<span style="mso-spacerun: yes">       </span>1<span style="mso-spacerun: yes">         </span> 3<span style="mso-spacerun: yes">        </span><span style="mso-spacerun: yes"> </span>5<span style="mso-spacerun: yes">   </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'>arctan(1/m) = -(1 - -----(1 - -----(1 - -----(1 - ...)))), m&gt;1.<span style="mso-spacerun: yes">   </span>(9)<span style="mso-spacerun: yes">   </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-size:9.0pt; mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">              </span>m<span style="mso-spacerun: yes">     </span>3·m·m<span style="mso-spacerun: yes">     </span>5·m·m<span style="mso-spacerun: yes">     </span>7·m·m<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">  </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Wird (9) auf die Formel (5) von MACHIN angewendet, kann man wie folgt programmieren</span><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'>: <o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span>Program pimachin;{1000 Stellen, mit der Formel von Machin berechnet}<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span>uses crt,dos;{ pi/4 = 4 arctan(1/5) - arctan(1/239) }<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">  </span>const n=1005;{5 Sicherheitsstellen}<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">  </span></span><span lang=EN-GB style='font-size: 9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho";mso-ansi-language: EN-GB'>var i,j,k,m,nr,di:integer;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">      </span>c,d,q,u,x:word;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">      </span>a:array[1..2,1..n+1] of word;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">      </span></span><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt; mso-fareast-font-family:"MS Mincho";mso-ansi-language:IT'>ta,te:real;h,mi,se,hs:word;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"; mso-ansi-language:IT'><span style="mso-spacerun: yes"> </span></span><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'>procedure divi(y:word);<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>begin<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>c:=0;for j:=1 to n+1 do<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>begin x:=a[nr,j]+c;q:=x div y;a[nr,j]:=q;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span></span><span lang=FR style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:FR'>d:=x-y*q;c:=10*d;end;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=FR style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"; mso-ansi-language:FR'><span style="mso-spacerun: yes"> </span></span><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'>end;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>procedure mult(y:word);<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>begin<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>for j:=1 to n+1 do a[nr,j]:=y*a[nr,j];<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>for j:=n+1 downto 2 do<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>begin u:=a[nr,j] div 10;a[nr,j-1]:=a[nr,j-1]+u;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>a[nr,j]:=a[nr,j] mod 10;end;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>end;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>procedure atn;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>begin<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>a[nr,1]:=1;k:=trunc(n*ln(10)/ln(m)/2);<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>for i:=k downto 1 do<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span></span><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:IT'>begin<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"; mso-ansi-language:IT'><span style="mso-spacerun: yes">   </span>divi(2*i+1);mult(2*i-1);divi(m);divi(m);<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"; mso-ansi-language:IT'><span style="mso-spacerun: yes">   </span></span><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'>for j:=2 to n-1 do a[nr,j]:=9-a[nr,j];<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">   </span>a[nr,n]:=10-a[nr,n];<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>end;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>divi(m);<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>end;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>Begin<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">   </span></span><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:IT'>gettime(h,mi,se,hs);ta:=3600*h+60*mi+se+hs/100;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"; mso-ansi-language:IT'><span style="mso-spacerun: yes">   </span>clrscr;writeln;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"; mso-ansi-language:IT'><span style="mso-spacerun: yes">   </span>nr:=1;m:=5;atn;mult(4);<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"; mso-ansi-language:IT'><span style="mso-spacerun: yes">   </span>nr:=2;m:=239;atn;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"; mso-ansi-language:IT'><span style="mso-spacerun: yes">   </span></span><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'>for i:=n downto 2 do<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">   </span></span><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:IT'>begin<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"; mso-ansi-language:IT'><span style="mso-spacerun: yes">    </span>di:=a[1,i]-a[2,i];<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"; mso-ansi-language:IT'><span style="mso-spacerun: yes">    </span></span><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'>if di&lt;0 then<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">    </span></span><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt; mso-fareast-font-family:"MS Mincho";mso-ansi-language:IT'>begin di:=di+10;a[1,i-1]:=a[1,i-1]-1;end;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"; mso-ansi-language:IT'><span style="mso-spacerun: yes">    </span>a[1,i]:=di;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"; mso-ansi-language:IT'><span style="mso-spacerun: yes">   </span></span><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'>end;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">   </span>nr:=1;mult(4);<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">   </span>writeln('<span style="mso-spacerun: yes">    </span>¶=3.');write('<span style="mso-spacerun: yes">    </span>');<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">   </span></span><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:IT'>gettime(h,mi,se,hs);te:=3600*h+60*mi+se+hs/100;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"; mso-ansi-language:IT'><span style="mso-spacerun: yes">   </span></span><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'>for i:=2 to n-4 do<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">   </span>begin<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">    </span>write(a[1,i]);<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">    </span>if ((i-1) mod 10=0) then write(' ');<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">    </span>if ((i-1) mod 50=0) then begin write('(',i-1,')');<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">    </span>writeln;write('<span style="mso-spacerun: yes">    </span>');end;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">   </span></span><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'>end;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">   </span>write('Rechenzeit ',te-ta:3:2,' s');<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">   </span></span><span lang=EN-GB style='font-size: 9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho";mso-ansi-language: EN-GB'>repeat until keypressed;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span></span><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'>End.<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Das Programm ist nur wenig komplizierter als das erste, aber doppelt so schnell. Mit ihm erhält man bei derselben Taktfrequenz wie oben (die auch im folgenden weiter vorausgesetzt wird), 1000 Stellen in einer halben Sekunde. Es läßt sich bis auf 4600 Stellen erweitern.<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Bereits 1994 veröffentlichte DAVID ADAMSON [7] ein Programm für 2150 Stellen, in dem er die Machin-Formel in folgender Form anwandte:<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;font-family:Symbol;mso-fareast-font-family: "MS Mincho"'>&#960; </span><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt; mso-fareast-font-family:"MS Mincho"'>= 3.2 + 1/25(-3.2/3 + 1/25(3.2/5 + 1/25(-3.2/7 + ...).).)<span style="mso-spacerun: yes">  </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">     </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">    </span>- 1/239(4 +1/239^2(-4/3 +1/239^2(4/5 +1/239^2(-4/7 +...).).).<span style="mso-spacerun: yes">   </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">                                        </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Sie ähnelt unserer geschachtelten Klammerschreibweise (9), ist aber aus leicht erkennbaren Gründen für das Programmieren weniger vorteilhaft als diese. Bei gleicher Schnelligkeit ist das Programm von Adamson recht lang und unübersichtlich.<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">                                                </span><span style="mso-spacerun: yes">                               </span><center>*</center><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt'><span style='font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>10000 Stellen in einer Minute erhält man mit einer Formel von GAUSS (1777-1855):<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'><![if !supportEmptyParas]>&nbsp;<![endif]><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span>&#960;=48*arctan(1/38)+80*arctan(1/57)+28*arctan(1/239)+96*arctan(1/268)<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">       </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>und dem Programm<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span>Program pigauss;{10000 Stellen von pi mit der Gauss-Formel}<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span>uses crt,dos;{pi=48*atn(1/38)+80*atn(1/57)+28*atn(1/239)+96*atn(1/268)}<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span>const n=10005;{5 Sicherheitsstellen}<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span></span><span lang=EN-GB style='font-size: 9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho";mso-ansi-language: EN-GB'>var i,j,k,m,nr,di:integer;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">     </span>c,d,q,u,x:word;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">     </span>a:array[1..2,1..n] of word;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">     </span>ch:char;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>procedure divi(y:word);<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>begin<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>c:=0;for j:=1 to n+1 do<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>begin x:=a[nr,j]+c;q:=x div y;a[nr,j]:=q;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span></span><span lang=FR style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:FR'>d:=x-y*q;c:=10*d;end;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=FR style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"; mso-ansi-language:FR'><span style="mso-spacerun: yes"> </span></span><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'>end;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>procedure mult(y:word);<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>begin<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>for j:=1 to n+1 do a[nr,j]:=y*a[nr,j];<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>for j:=n+1 downto 2 do<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>begin u:=a[nr,j] div 10;a[nr,j-1]:=a[nr,j-1]+u;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>a[nr,j]:=a[nr,j] mod 10;end;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>end;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>procedure atn;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>begin<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>a[nr,1]:=1;k:=trunc(n*ln(10)/ln(m)/2);<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>for i:=k downto 1 do<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span></span><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:IT'>begin<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"; mso-ansi-language:IT'><span style="mso-spacerun: yes">   </span>divi(2*i+1);mult(2*i-1);divi(m);divi(m);<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"; mso-ansi-language:IT'><span style="mso-spacerun: yes">   </span></span><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'>for j:=2 to n-1 do a[nr,j]:=9-a[nr,j];<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">   </span>a[nr,n]:=10-a[nr,n];<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>end;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>divi(m);<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>end;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>procedure addi;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span>begin<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>for i:=n downto 2 do<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">   </span></span><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:IT'>begin<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"; mso-ansi-language:IT'><span style="mso-spacerun: yes">    </span>a[1,i]:=a[1,i]+a[2,i];u:=a[1,i]div 10;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"; mso-ansi-language:IT'><span style="mso-spacerun: yes">    </span>a[1,i-1]:=a[1,i-1]+u;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"; mso-ansi-language:IT'><span style="mso-spacerun: yes">   </span></span><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'>end;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>for i:=1 to n do a[1,i]:=a[1,i] mod 10;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>end;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>procedure warten;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>begin<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">   </span>writeln;writeln;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">   </span></span><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:IT'>write(i-1,' Stellen. </span><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'>');<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">   </span>if (i&lt;n-4) then write('Weiter mit der Leertaste.')<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">   </span>else write('Zurueck zum Programm mit der Leertaste.');<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">   </span></span><span lang=EN-GB style='font-size: 9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho";mso-ansi-language: EN-GB'>repeat ch:=readkey until ch=' ';<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">   </span>clrscr;writeln;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span>end;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">  </span></span><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'>Begin<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">   </span>clrscr;writeln('Berechnet werden 10000 Stellen von Pi.');<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">   </span>writeln('Bitte (bei 500 MHz Taktfrequenz) eine Minute warten!');<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">   </span></span><span lang=EN-GB style='font-size: 9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho";mso-ansi-language: EN-GB'>nr:=1;m:=38;atn;mult(12);nr:=2;m:=57;atn;mult(20);addi;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">   </span>m:=239;atn;mult(7);addi;m:=268;atn;mult(24);addi;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">   </span>nr:=1;mult(4);clrscr;writeln('3.');<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">   </span>for i:=2 to n-4 do<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">   </span>begin<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">    </span>write(a[1,i]);if i=1 then write('.');<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">    </span>if (i-1) mod 4=0 then write(' ');<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">    </span>if (i-1) mod 1000=0 then warten;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family: "MS Mincho";mso-ansi-language:EN-GB'><span style="mso-spacerun: yes">   </span></span><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'>end;<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">  </span>End.<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Angezeigt werden sie zu je 1000 beim Drücken der Leertaste. Ihre Richtigkeit überprüfen kann man bis zu 5000 mit [3], darüber hinaus mit [8].<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>  <span                                      <br>--------------------------<br> <sup>1)</sup> In (6) gehen die Faktoren k/(2k+1) vor den Klammern, k=1,2,3,..., für k<span style='font-family:Symbol;mso-fareast-font-family: "MS Mincho";mso-bidi-font-family:"Calibri"'>&#8594;&#8734;</span> gegen &#189;. Dies hat zur Folge, wie in [6] angemerkt wird, dass k=n/lg2 Faktoren berechnet werden müssen, um n Nachkommastellen von <span style='font-family:Symbol;mso-fareast-font-family: "MS Mincho";mso-bidi-font-family:"Calibri"'>p</span> zu erhalten.<br> In (8) gehen die Faktoren (2k-1)<sup>2</sup>/(8k(2k+1)) für k<span style='font-family:Symbol;mso-fareast-font-family: "MS Mincho";mso-bidi-font-family:"Calibri"'>&#8594;&#8734;</span> gegen &#188;. Entsprechend sind von ihnen nur n/lg4 n&ouml;tig, d. h. halb so viele wie bei (6). (Gemeint sind die ganzzahligen Anteile von n/lg2 und n/lg4, in den Programmen mit "trunc" bezeichnet.)<br> Ergänzung: mit dem <i>Taschenrechner</i> erhält man in zwölf Schritten mit (6) À&#8776;3,<u>141</u>479649, d.h. drei richtige Nachkommastellen, und mit (8) À&#8776;3,<u>14159265</u>3; das sind acht. (Wie man dabei am besten vorgeht - vom Ende aus r&uuml;ckw&auml;rts -, wird <a href="http://www.hjcaspar.de/hpxp/pieinf.htm"><font color="darkblue"><u>hier</u></a><font color="black"> erkl&auml;rt.) <br><br> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Literatur<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>[1] Peter Mäder: Mathematik hat Geschichte, Metzler Schulbuch, 1992 <o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>[2] Kilian Keidel, Hans Joachim Müller: Informatik Pascal, Bayerischer <o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes">     </span>Schulbuch-Verlag, 1988<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>[3] Jörg Arndt, Christoph Haenel: Pi, Springer Verlag, 2. Auflage, 2000<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>[3a] &quot;<span style="mso-spacerun: yes">    </span>&quot;<span style="mso-spacerun: yes">        </span>&quot;<span style="mso-spacerun: yes">        </span>&quot;<span style="mso-spacerun: yes">     </span>&quot;<span style="mso-spacerun: yes">  </span>S. 78<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=FR style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"; mso-ansi-language:FR'>[4] Gérard Sookahet: Formules et Algorithmes pour évaluer Pi,<span style="mso-spacerun: yes"></span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=FR style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"; mso-ansi-language:FR'><span style="mso-spacerun: yes">     </span> <a href="http://o.viennet.free.fr/themedetude/09_nombre_pi/pi.pdf"><font color="darkblue"><u>http://o.viennet.free.fr/themedetude/09_nombre_pi/pi.pdf</u></a><font color="black"> (höflich, wie die Franzosen sind, beginnt der Autor mit "Bonjour Noble Lecteur" <img src="sm1.gif">) <o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"; mso-ansi-language:EN-GB'>[5] Rabinowitz S. and Wagon S., A spigot algorithm for À, American Mathematical Monthly 102(1995), p. 195-203 <span style="mso-spacerun: yes">  </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>[6] Internet-Dokument <a href="http://www.jjj.de/hfloat/spigot.txt"><font color="darkblue">http://www.jjj.de/hfloat/spigot.txt</a><font color="black"><span style="mso-spacerun: yes">    </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"; mso-ansi-language:EN-GB'>[7] David Adamson: Getting Big Pi <a href="http://www.piclist.com/techref/language/delphi/swag/MATH0081.html"><font color="darkblue"><u>dhttp://www.piclist.com/techref/language/delphi/swag/MATH0081.html</u></a><font color="black">. <o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>[8] Liste mit 500 000 Dezimalen: <a href="https://d-nb.info/1197206078/34"><font color="darkblue">https://d-nb.info/1197206078/34</a><font color="black"><span style="mso-spacerun: yes">  </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>[9] Werner Scholz: Die Geschichte der Approximation der Zahl Pi, <a href="http://www.cwscholz.net/projects/fba/"><font color="darkblue">http://www.cwscholz.net/projects/fba/</a><font color="black"><span style="mso-spacerun: yes">  </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=EN-GB style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"; mso-ansi-language:EN-GB'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <o:p></o:p></span></p> <p class=MsoPlainText style='margin-left:9.0pt'><span style='font-size:17px; mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'> <font face="Calibri">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Zur Ansicht: <a href="1000%20Stellen.htm">1000 Stellen, mit pitau.pas berechnet</a></span><span style='font-size:11.0pt;mso-bidi-font-size: 11.0pt'><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span lang=IT style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"; mso-ansi-language:IT'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Seite erstellt am 9.10.2001<span style="mso-spacerun: yes">             </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-size:9.0pt;mso-bidi-font-size:11.0pt;mso-fareast-font-family:"MS Mincho"'><span style="mso-spacerun: yes"> </span><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Nachtrag Jan. 2002:<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>In [9] wird eine Formel von G. F. FREEMAN aus dem Jahre 1958 zitiert mit drei Arkustangenstermen, in der nur subtrahiert wird: </span><span style='font-family:Symbol;mso-fareast-font-family:"MS Mincho";mso-bidi-font-family: "Calibri"'>&#960;</span><span style='font-family:"Calibri"; mso-fareast-font-family:"MS Mincho"'>=32arctan(1/10) 16arctan(1/515)-4arctan(1/239). Ein danach erzeugtes Pascal-Programm ist ebenso schnell wie das für die Formel von Machin, liefert aber 2000 richtige Stellen mehr als dieses. <o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'><![if !supportEmptyParas]>&nbsp;<![endif]><o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'>Nachtrag Juni 2008:<o:p></o:p></span></p> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'> Ein C-Programm für1000 Stellen von Pi in 70 ms unter Verwendung von (8) und der Grundidee des Programms pitau.pas gibt <i>lagalopex</i> am 22.8.06 (03:56) <a href="http://www.hackerboard.de/programmieraufgaben/25295-pi.html"><font color="darkblue"><u>hier</u></a> <font color="black"> wieder (scrollen bis "Spoiler: 1000 Nachkommastellen von Pi in 70 ms", auf "Show" klicken, dann unten links auf "Quelle": es erscheint <i>dieser</i> Artikel). <br><br> Nachtrag März 2025:<br>Pythagoras trifft Archimedes - so könnte man scherzhaft ein neues, elementares Näherungsverfahren für &#960; von DETLEF DÜMKE auf dem <a href="https://matheplanet.com/matheplanet/nuke/html/article.php?sid=2019"><font color="darkblue"><u>Matheplaneten</u></a><font color="black"> nennen. Davon ein Ausschnitt:<br> <img src="pimitdreiecken.png"> <br> <!-- <img src="grnball.gif" name="wechsel" onmouseover="document.images.wechsel.src='PythArchivar.png'" onmouseout="document.images.wechsel.src='grnball.gif'"> <img src="PythArchivar.png"> //--> <br> <p class=MsoPlainText style='margin-top:0cm;margin-right:48.1pt;margin-bottom: 0cm;margin-left:27.0pt;margin-bottom:.0001pt;text-align:justify'><span style='font-family:"Calibri";mso-fareast-font-family:"MS Mincho"'><a href="pascalpi.htm"><font color="firebrick"><u>Zurück zur Pi-Eingangsseite</u></a><o:p></o:p></span></p> </div> <br><br> </body> </html>